viernes, 31 de mayo de 2013

ENGLISH LANGUAGE_ 1ST ESO: TRANLATION.



CHECK YOUR PROGRESS.
Translate the sentences into English.
i.        El amigo de Sam es inteligente y confiado.
ii.        Ella tiene los ojos pequeños y la nariz delgada.
iii.        No hay nada de arroz de Tailandia.
iv.        ¿Cuánto pan hay?
v.        Hay fresas en el helado.
vi.        Lisa se levanta a las 8 en punto de la mañana.
vii.        John hace deporte los martes y los jueves.
viii.        Normalmente, me voy a la cama tarde los sábados.
ix.        El hospital está enfrente de la oficina de correos.
x.        ¿Estás jugando al tenis ahora?
xi.        No puedo correr deprisa, pero puedo nadar bien.
xii.        No debes darle patadas al balón en baloncesto.
xiii.        Eric es más alto que Jason.
xiv.        Las películas del Oeste son menos interesantes que las películas de ciencia ficción.
xv.        No había un sillón en el salón el mes pasado.
xvi.        Tu almohada estaba en el comedor anoche.
xvii.        ¿Fuiste al dentista ayer?
xviii.        Me descargué algo de música hace una hora.
xix.        Sarah se va a la montaña en julio.
xx.        ¿Qué vas a hacer este fin de semana?

ENGLISH LANGUAGE_ 2ND ESO: TRANSLATION


CHECK YOUR PROGRESS.
Translate the sentences into English.
i.        Los lunes no necesito calculadora para el colegio.
ii.        ¿Con qué frecuencia juegas al voleibol?
iii.        Jim está esperando en la cola para comprar entradas.
iv.        ¿Por qué estás pidiendo la comida ahora?
v.        El sobrino de Lisa nació en Escocia.
vi.        ¿Cuántos tenías cuando te hiciste profesor?
vii.        Cogimos un taxi hacia el hotel porque estaba lloviendo.
viii.        Estaba comprando comida cuando perdí la cartera.
ix.        El tiempo cambiará esta noche. Habrá tormenta.
x.        Si mi equipo pierde el partido, estaremos muy tristes.
xi.        Este teléfono móvil es el teléfono más caro de la tienda.
xii.        Esos colores no son los suficientemente vivos para mi madre.
xiii.        Unos científicos acaban de descubrir una serpiente nueva.
xiv.        ¿Cuánto tiempo hace que entrenas elefantes?
xv.        Siempre usamos el aire acondicionado en verano.
xvi.        No hay mucho ruido en nuestro colegio.
xvii.        No puedo soportar la música clásica. Es demasiado aburrida.
xviii.        No debes poner los zapatos encima de la mesa.
xix.        No deberías coger las flores del parque.
xx.        Pareces realmente cansado. ¿Puedo ayudarte?

domingo, 26 de mayo de 2013

Repaso trigonometría                     4º ESO

  1. Halla las razones trigonométricas de los ángulos  C  B del triángulo  ABC  sabiendo que es rectángulo en A, b= 12,98 cm  y c =17,28 cm.
  2. Sabiendo que  a  es un ángulo agudo y que el  cos a = 1/5, calcula, utilizando radicales,  sen a  y  tg a
  3.  Si cos x = Ö2/ 3 y x es un ángulo del 4ºcuadrante calcula sen y tag de x.

  1. El ángulo que forma el suelo con la recta que une el extremo de la sombra de un árbol con la parte superior del árbol es de 40°. Calcula la longitud de la sombra sabiendo que el árbol mide 15 m de altura.
  2. Se quiere medir la altura de una estatua colocada en el centro de un lago circular. Para ello, se mide el ángulo que forma la visual al extremo superior de la estatua desde el borde del lago con la horizontal y resulta ser de 50°; nos alejamos 45 dm y volvemos a medir, obteniendo un ángulo de 35°. Averigua la altura de la estatua y la superficie del lago.
  3. De un ángulo x sabemos que tg x = ¾  y que pertenece al tercer cuadrante. Calcula sen y cos de x.
  4. Sitúa sobre la circunferencia goniométrica, el ángulo de 135° y calcula sus razones trigonométricas relacionándolo con uno del primer cuadrante.
  5. Halla la altura de una antena sabiendo que a una distancia de 18 m se ve la parte superior de la antena bajo un ángulo de 30°.
  6. Antonio está descansando en la orilla de un río mientras observa un árbol que está en la orilla opuesta. Mide el ángulo que forma su visual con el punto más alto del árbol y obtiene 35°; retrocede 5 m y mide el nuevo ángulo, obteniendo en este caso un ángulo de 25°. Calcula la altura del árbol y la anchura de río.
  7. Indica si las siguientes afirmaciones son verdaderas o falsas. Razona la respuesta.

a)  Si  tg a > 0 entonces  a  está en el 1er cuadrante exclusivamente.

b)  Si  sen a < 0  y  tg a > 0 entonces  cos a < 0.

c)  Las razones trigonométricas del ángulo  -a  coinciden con las del ángulo  360 - a.

d)  Si  sen a < 0,  a  puede estar en el 2º  o  3er cuadrante.

 

 

 

 

 

Repaso de probabilidad       4ºESO


  1. En un experimento,  E=(1,2,3,4,5,6,7,8,9)  representa el espacio muestral,  A = (2,3,4) representa un suceso, y  B=(4,5,6,9),  otro suceso:
a)  Escribe, dando todos sus casos, los sucesos , A', B', A È B y A Ç B. 
b)  Calcula las siguientes probabilidades:P [A]P [B]P [A']P [B']P [A È B]P [A Ç B]

  1. De una baraja española (de 40 cartas) extraemos tres cartas sin reemplazamiento (es decir, sin devolverlas al mazo en cada caso). Calcula la probabilidad de que las tres cartas sean de oros.



  1. A un congreso de nuevas tecnologías asisten 1 000 personas repartidas así:


HOMBRE
MUJER
HABLAN INGLES
515
310
NO HABLAN INGLES
95
80


Llamamos  H = hombre,  M = mujer,  I = habla ingles,  NO I = no habla ingles.

a)  Calcula las siguientes probabilidades:P [H],  P [M],  P [I],  P [NO I]

b)  Describe los siguientes sucesos y calcula sus probabilidades:M  y  I ;  NO I/H ;  H/NO I


  1. Se lanza cuatro veces una moneda perfectamente regular y sale cruz las cuatro veces. Indica razonadamente cuál de las siguientes frases te parece más correcta:

a)  En el próximo lanzamiento es más probable que salga cruz.

b)  En el próximo lanzamiento es más probable que salga cara.

c)  La próxima vez es igualmente probable cara que cruz.

  1. Un dado está trucado de modo que la probabilidad de obtener un número par es el triple de la de obtener uno impar. Calcula la probabilidad de obtener:

a)  Un número par.               b)  Un 3.                             c)  Un 4.